植物の根に関する諸問題[66] - 最近の画像解析による根量の把握-

木村 和彦

農業および園芸 第74巻 第1号(1999年) p.54-60

1

根量把握の重要性は改めて述べるまでもない。 しかし、根量の現実的な意味での定量方法はま だ確立していないのが現状である。それは、根 が非常に長く一例えば成熟期の水稲一株では 12km にも及ぶー、分岐根を出し、かつ太さが 様々なものが混在しているため、物差しで直接 測定することが非常に困難なことに起因してい る。そこで、間接的に推定する方法が提案され、 現在はライン交差法(Newman, 1966; Tennant, 1975)を基本とした方法が普及している。

しかし、交差点数をカウントする手間は容易 ではなく、自動的にカウントするルートスキャ ナーと呼ばれる機械が市販されている。しかし、 この機械は高価である上、細根をカウントでき ない場合があり、確実ではない。

画像解析は従来は高価な専用コンピューター で行なっていたが、近年のコンピューターの高 性能化・大容量化・低価格化により、Pentium あるいはPowerPC搭載のパーソナルコンピュー タでも解析できるようになり、これらの CPU 上 で動作する根系解析専用ソフトウェアも市販さ れている。また、当初の画像解析はライン交差 法によるものが多かったが、近年新たな計算方 法が提案されてきた。

最近の画像解析による根量の把握については、 筑紫(1994)および Box(1996)がレビューを行なっ ている。本稿では、それらのレビューと一部重 複する部分もあるが、画像解析での根長と直径 について原理的な面からレビューを行い、著者 が開発した方法を併せて紹介する。

1.**画像解析とは**

画像解析では画像を小さな点の集まりである と考え、最小単位であるこれらの点を画素また はピクセルと呼ぶ。一般的にはこれらの点は小 さな正方形であり、これが二次元配列で構成さ れたものが画像である。カラー画像では、R,G,B の赤緑青の3色について強度が0から255の値 を持つのが普通である。しかし、全体の色の強 度で0から255を持つグレースケール画像で解 析を行なう場合が多く、また形や長さの解析に は値が0か1(または255)のどちらかの値を持つ 二値化画像が用いられる。

2. 根長の計算

入力した根の画像は、直線と曲線から構成さ れていると考えられる。正確な長さの計算には、 根の部分を直線あるいは曲線で近似される部分 に分割し、分割された各々について直線あるい は曲線を表す式を当てはめて長さを計算すれば よい。しかし、この方法は分割するための方法 が複雑でかつ膨大な時間がかかるため、現実的 な方法とは言えない。そこで、ここでは直線で 構成されていると単純化して考えてみる。

(1) 一本の場合

図 1(1)に直線 AB を示した。画像では、この 直線を■の画素で表わし、直線に属さない画素 を□で示す。さて、この■の画素の連結方向に 着目し、隣の画素との方向が斜めのものを○で、 水平あるいは垂直のものを●で示す。

直線 AB の長さを図 1(2)で考えることにする。 この図は、○および●の数をそれぞれ Nd,Noと し、●と○を並べ替えたものである。Nd と No は画像が複雑でも画像中でのこれらの数は単純 なアルゴリズムで求めることができるので、以 下この二つの変数 Nd,Noを用いて長さを計算す る方法を考えてみる。

単純な方法として、直線 BC の長さ(Nd + No) から AC の長さを計算する方法がある。AB と BC のなす角度を θ として、

 $L = (Nd + No)/\cos\theta$

となるから、 θ が $0 \sim \pi/4$ の範囲のランダムな ある角度であると仮定すると、

$$L = (Nd + No) / (\int_0^{\pi/4} \cos \theta \ d\theta \ / \ (\pi/4))$$

= 1 1107 (Nd + No) [1]

となる。なお、(*Nd* + *No*)の代わりに直線の画素数(■の個数)を用いる方が一般的であるが、両者には本質的な差はなく結果の差も通常無視で

きるものである。画素数を用いる考え方は、こ こでの考え方と多少異なるものの Smit ら(1994)、 Tanaka ら(1995)によって提案されており、係数 をキャリブレーションから求める方法は Zoon と Van Tienderen(1990)によって示されている。

次に、画素の連結方向を考慮して考えてみる。 水平あるいは垂直の連結の距離は1であるのに 対し、斜めの連結の距離は $\sqrt{2}$ であり、単純に それらを合計したものは BD の長さと AD の長 さの和になる。この長さは AB よりも長く、そ の長さ *L* は

$$L' = \sqrt{2} \quad Nd + No$$

= $\sqrt{2} \quad L \sin \theta + L(\cos \theta - \sin \theta)$
= $((\sqrt{2} - 1)\sin \theta + \cos \theta)L$

であり、その期待値 E(L')はθが 0~π/4 の範囲 のランダムなある角度であると仮定すれば、

$$E(L') = \left[(\sqrt{2} - 1) \int_0^{\pi/4} \sin \theta \ d\theta \ / (\pi/4) \right] + \int_0^{\pi/4} \cos \theta \ d\theta \ / (\pi/4) L$$

$$= (\sqrt{2} - 1) \times 8/\pi \times L$$

= 1.0547L

従って、

$$L = 0.948(\sqrt{2} Nd + No)$$
 [2]

となる。この式は、前の式に比べて変数が二つ に増えており、精度は増している。なお、式 [1],[2]の 導入は Dorst and Smeulders(1987), Glasby and Horgan(1995)を参考にした。

L'の過大評価を補正する方法としては、 Vossepoel and Smeulders(1982)や Chikushi ら (1990)の方法がある。どちらの方法とも精度は 式[2]より向上するが、Nd, No 以外の新たな変数 を用いる必要があり、その変数の算出も複雑で かつ時間がかかる。

なお、一本の直線のみの場合、定理より

$$L = [Nd^{2} + (Nd + No)^{2}]^{1/2}$$
[3]

で求められるが、現実にはそのような場合はほ とんどない。

(2)直線が二本以上の場合

以上の議論は、一本の直線の場合であったが、 それ以上例えば二本の直線の場合はどうであろ うか。式[1],[2]は、全く同様に考えて構わない。 式[3]は、図 1(3)に示した通り、二本の直線 AF,BF それぞれに対して当てはめなければならないの に、式[3]を Nd,No の総数から計算すると過小評 価する。その例を図 1(4)に示すが、式[3]は L_{AF} + L_{BF} ではなく L_{AB} を求めることになり、過小評価 することがわかる。

Pan and Bolton(1991)は、どの直線も Nd,No が 同じような分布をするとの仮定で式[3]を用い ている。しかし、この仮定は典型的にはどの直 線も同じ方向を向けることであり、そのように 置くことには事実上困難であるし、直線をラン ダムに置いた場合は確実に過小評価する。従っ て式[3]はここでは用いる事ができない。

そこで、ここでは AF + FB = AE + EB を満た す BD 上の点 E を考え、二本の直線の長さを、

$$L = [Nd^{2} + (Nd + (1 - m) No)^{2}]^{1/2} + mNo$$

で定義する。mは二本の組み合わせによって 0 ~1 の値をとるが、二本の長さと角度の組み合 わせが無限にあり式[1]や[2]のような積分で解 くことは困難である。そこで、ここではモンテ カルロ法により 1000 本のランダムな直線を 25 回発生させ、Nd、No と長さを計算し、さらに 最適な mをニュートン法で求めた。この時の m は 0.5137 であったが、0.5 としても長さの計算 には 0.1%の違いしかなかく、簡略化のため mを 0.5 とした。以上より、

$$L = [Nd^{2} + (Nd + No/2)^{2})]^{1/2} + No/2$$
[4]

で求めることができる(木村ら,1995)。

(3)各式の比較

式[1][2][4]は、直線が多数ありかつ0が 0~π/4 の範囲にランダムに分布していることを前提に しているため、この前提を満たさない場合は誤 差が生ずる。ここではこの誤差を検討する。一 本の直線で、 $\theta \ge 0 \sim \pi/2$ まで変化させた場合に ついて計算したのが、図2である。

精度は、式[1]<式[2]<式[4]である。筑紫(1994) も指摘しているように、ランダムにするために は、根の試料を短く切断する手間がかかる上、 完全にランダムに配置する事は困難であるしラ ンダムかどうかの評価法もない。従って、ラン ダムでない配置でもできるだけ正確な長さを求 めることが望ましい。式[4]は精度の面から有利 であるが、さらに正確な値を出すためには角度 を0度あるいは45度にすればよく、この配置は 実際上可能でありこの点からも有利である。

3.直径の計算

画像中の根の面積と長さから平均の直径が計 算できる。しかし、この方法が有効なのは根の 直径が均一な場合であり、実際は直径が大きい ものから小さいものまでが混在している為、直 径毎の長さの分布を求める必要がある。

ある画像の直径を求めるには、対象とする根 (以下オブジェクトと呼ぶ)の背景との境界画 素に着目し、この画素から直径方向にあるもう 一つの画素を選んでこの二点間の距離を直径と するのが正確である。しかし、この方法では相 手の画素を選ぶかに時間がかかる上、直径毎の 長さは不明である。

(1)ランダムな配置を前提とした方法

そこで、直径をオブジェクトの垂直方向ある いは水平方向の長さから推定する方法が用いら れている。

直径を Dとするオブジェクトが、直径の方向 と横軸とが成す角度がθで配置された場合を考 える。この場合、直径は

 $D = I \cos \theta$

で表される(図 3(1))。cos θの代わりに *k*(定数)と 置くと、*D*の推定値 *D*は

$$D' = kI$$
$$= kD/\cos\theta$$

従って、D'の期待値がDとなるには、kは 1/cos θ の期待値の逆数となる必要がある。 θ が $0 \sim \pi/4$ の範囲のランダムなある角度であると仮定すれ ば、

$$k = 1 / \int_{0}^{\pi/4} (1/\cos \theta) d\theta / (\pi/4)$$

= 1/[log|(1 + sin \theta)/cos\theta |]_{0}^{\pi/4} / (\pi/4)
= 0.891
$$\therefore D = 0.891I$$
 [5]

である。さらに、*I*を求める方法を考えてみよ う。直線上の点についてθ が 0~π/4 の範囲で あるためには、実際の画像では水平あるいは垂 直方向に切った線の内どちらか短い線分となる。 これは、エッジ消去の回数から求められる。エ ッジとはオブジェクトの画素のうち、上下左右 隣に背景の画素を持つものをいう。図 3(2)で示 した様に、エッジ消去を繰り返せばオブジェク トは消去されるが、この繰り返し数 *n* は *I* の 1/2 に相当するから、

$$D = 1.782n$$
 [6]

となる(Kimura ら,1997)。Smucker ら(1987)や Lebowitz(1988)もエッジ消去を繰り返した回数 から直径を推定できるとしているが、その係数 は彼らの論文中では明記されていない。

式[5]の精度を理論的に計算すると、-11~ +26%程度の誤差があることになり、0との関係 は図2の式[1]の結果を逆にした様な形である。 ランダムな配置を前提にしているので、精度が 低いのは止むを得ない。

なお、 θ を $0 \sim \pi/2$ まで拡張したのが Kirchhof(1992)であり、行方向および列方向にス キャンし、直接 *I* を求めている。しかし、この 場合は cos θ は $0 \sim 1$ の値を取る為、*I*は $D \sim \infty$ の 値を取り、レンジが無限大に広がるため、その

推定精度は式[6]よりも悪いことになる。 (2)ランダムな配置を前提としない方法

式[5]の精度が良くないのは、配置された角度 を求めることができないため、角度がランダム であるとの前提を設けて推定した為であった。

ランダムな配置を前提としないで直径を求め る方法として、エッジ消去のかわりに背景から のユークリッド距離が小さい画素から消去を行 なう方法がある(Kimura and Yamasaki, 1998)。

この方法では、前述の方法と異なりユークリッド距離に応じて消去されているので、配置による誤差はほとんど無い(図 3.(3))。

4.画像解析の一例

筆者が使用している水稲根の測定方法を紹介 する。画像解析は、マッキントッシュ用のフリ ーソフトウェア NIH Image(Rasband と Bright, 1995)を用いて行なっている。また、ウィンドウ ズでも NIHImage を移植したものを利用できる。

解析の流れを図4に示した。図5は水稲根の 解析中の一部の画像である。以下順に説明する。 (1)**画像入力**

根の洗浄は村上・米山(1988)の方法を参考に した。根は洗浄後、メチルバイオレットで染色 した。画像入力時は透明のアクリルバットに水 を数 mm の深さまで入れ、根をピンセットで広 げながら並べた。

入力装置は、A4 サイズまでの画像を高解像度 で入力できるイメージスキャナーを使用した。 この装置は標準では反射光を入力するが、水に 根を浮かべているためコントラストが弱く、そ のためノイズが大きかったので、透過原稿ユニ ットを用いている。入力モードはグレースケー ル 256 階長、解像度は 300dpi(0.084 mm ピッチ) であり、ファイル形式は TIFF とした。

(2)前処理

画像のコントラストがはっきりしない場合は、 Sharpen プロシージャを使用するとよい。これ によりコントラストが強まり、二値化の閾値の 選択が容易になる。

二値化の閾値は、Density Slice コマンドで閾

値を変えながら画像を見て、根と背景の分離が 最適と思われる値を選択している。

(3)細線化

続いて細線化を行なう。これは、オブジェク トの中心線を抽出する作業である。この作業に より、根長の計算を細線化された線の長の計算 に置き換えることができる。この細線化は、厳 密には一本の直線につき直径の長さ分だけ短く なる可能性があるが、直径に比べて長さが圧倒 的に大きいのでこの誤差は無視できる。

細線化は、Lebowitz(1988)、Smit ら(1994),Tanaka ら(1995)も行なっているが、交差による影響を小さく出来る。

(4)根長計算

下記のフィルター処理により、ある画素の8 近傍の画素のパターンによって値を変化させる。

(1	5	1)	
5	25	5	
$\left(1\right)$	5	1)	

そして、パターン毎の画素数を集計することで Nd,No を求めている。この方法は根と根の交差 もカウントしているのに対し、細線化した画像 の画素数だけをカウントする方法では交差をカ ウントすることはできない。

細線化で交差による影響を小さくし、さらに 交差もカウントしているので、従来のキャリブ レーションなどによる交差に起因する長さの過 少評価の補正が不必要になった。

(5) 一 画素の大きさ

イメージスキャナーでの入力解像度から一画 素の大きさを計算してある。スケールを同時に 入力し、校正を行なってもよい。後者は、イメ ージスキャナー以外の入力装置の場合には必要 な操作である。

(6)直径方向の画素消去

直径方向の距離に応じたフィルター処理を行なった。例えば、 $\sqrt{5}$ の距離を探すには以下のフィルター

 $\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 6 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}$

を使い、中心の位置(6)から $\sqrt{5}$ の距離にある画素(1)に背景の画素があるかどうかを検出している。

(7)直径毎の長さ計算

直径方向の画素消去によりある直径以下の根 を消去し、残った画像の長さを細線化画像の Nd,Noから求めこの長さをある直径以上の根の 長さであるとした。これを消去される画素がな くなるまで繰り返すことで、直径毎の長さを計 算できることになる。

5.まとめと今後

コンピューターの高性能化、大容量化、低価 格化により、画像解析による正確で迅速な根長 計測が可能になってきた。さらに、新しいアル ゴリズムの開発により、従来必要であったラン ダムな配置や根の重なりの補正は必要が無くな り、直径毎の長さの計算もできるようになった。

入力装置は高性能のディジタルカメラなどに より、高解像度での解析が行なえるようになる と思われれる。さらに、CT などの非破壊の画像 入力がもうすぐ手に届く事になると思われる。 この非破壊の画像入力により、非破壊の根系の 3 次元解析が本格化すると予想している。

- Box, J.E.Jr. 1996. In Waisel, Y., A. Eshel and U. Kafkafi eds., Plant roots:the hidden half. 193-237.
- Chikushi, J., S. Yoshida and H. Eguchi 1990. Biotronics 19: 129-135.
- 筑紫二郎 1994. 農業および園芸 69(5): 627-634.
- Dorst, L. and A. W. M. Smeulders 1987. COMPUT VIS 40 : 311-333.
- Dowdy, R. H., E. A. Nater and M. S. Dolan 1995. Comm. Soil Sci. 26 : 459–468.
- Grasbey, C.A. and G.W. Horgan 1995. Image

Analysis for the Biological Sciences. 153–183.

- 木村和彦・山崎慎一 1996.日作紀 65(別 2): 147-148.
- Kimura, K., S. Kikuchi and S. Yamasaki 1997. In Ando, T. et al. eds., Plant nutrition – for sustainable food production and environment. 683-684.
- Kimura, K. and S. Yamasaki 1998. Agron. Abstr., American Society of Agronomy. 311.
- Kirchhof, G 1992. Field Crop Res. 29: 79-88.
- Kulpa, Z 1977. COMPUT VIS 6 : 434-454.
- Lebowitz, R. J. 1988. Environ. Exp. Bot. 28 : 267-273.
- 村上敏文·米山忠克 1988. NARC 研究速報 5: 33-37
- Newman, E. I. 1966. J. Appl. Ecol. 3: 139-145.
- Pan, W.L. and R.P. Bolton 1991. Agron J. 83 : 1047-1052.
- Rasband, W.S. and D.S. Bright 1995. Microbeam Analysis Society J. 4: 137–149.
- Russ, J.C. 1994. The image processing handbook. 2nd ed., CRC Press, Boca Raton.
- Smit, A. L. et al., 1994. Plant Soil 158 : 145-149.
- Smucker, A. J. M. et al. 1987. In Taylor, H. M., ed., Minirhizotron Observation Tubes : Methods and Applications for Measuring Rhizosphere Dynamics, ASA Special Publication no. 50. American Society of Agronomy. 67–80.
- Tanaka, S., A. Yamauchi and Y. Kono 1995. Jpn. J. Crop Sci. 64 : 144–147.
- Tennant, D. 1975. J. Ecology 63: 995-1001.
- Vosspoel, A. M. and A. W. M. Smeulders 1982. Computer Graphics Image Processing 20 : 347-364.
- Zoon, F. C. and P. H. Van Tienderen 1990. Plant Soil 126 : 301–308.